Unlock Exclusive Discounts & Flash Sales! Click Here to Join the Deals on Every Wednesday!

Determination of nanogram levels of boron by ICP-AES (CAT#: STEM-ST-0180-WXH)

Introduction

Boron is a trace element that is naturally present in many foods and available as a dietary supplement. It is a structural component of plant cell walls and is required for plant growth, pollination, and seed formation




Principle

Atomic emission spectroscopy (AES) is a method of chemical analysis that uses the intensity of light emitted from a flame, plasma, arc, or spark at a particular wavelength to determine the quantity of an element in a sample. The wavelength of the atomic spectral line in the emission spectrum gives the identity of the element while the intensity of the emitted light is proportional to the number of atoms of the element. The sample may be excited by various methods.
Inductively coupled plasma atomic emission spectroscopy (ICP-AES) uses an inductively coupled plasma to produce excited atoms and ions that emit electromagnetic radiation at wavelengths characteristic of a particular element.

Applications

Common applications of atomic emission spectroscopy are in the analysis of trace elements in soils, water, metals, biological specimens, clinical specimens, food, physical evidence such as glass, and other solids.

Procedure

1. Prepare sample for analysis
2. Convert solution into aerosol
3. Introduce aerosol into excitation source
4. Atomization and excitation
5. Detection of emission lines

Materials

• ICP (Inductively Coupled Plasma) source
• Atomizer
• Monochromators
• Detectors
• Amplifiers