Unlock Exclusive Discounts & Flash Sales! Click Here to Join the Deals on Every Wednesday!

Wine analysis by Atomic absorption spectroscopy (AAS) (CAT#: STEM-ST-0160-WXH)

Introduction

Wine is one of the most widely consumed beverages and strict analytical control of trace elements content is required during the whole process of wine production from grape to the final product. Levels of trace elements in wine are important from both points of view: organoleptic – Fe, Cu, Mn and Zn concentrations are directly related to the destabilization and oxidative evolution of wines, and toxicological – toxic elements content should be under the allowable limit, wine identification. The identification of metals in wine is subject of increasing interest since complexation may reduce their toxicity and bioavailability. AAS is one of widely used methods for routine analytical control of wine quality recommended by the International Organization of Vine and Wine.




Principle

Atomic absorption spectrometry (AAS) detects elements in either liquid or solid samples through the application of characteristic wavelengths of electromagnetic radiation from a light source.
Atomic absorption spectroscopy (AAS) is based upon the principle that free atoms in the ground state can absorb light of a certain wavelength. Absorption for each element is specific, no other elements absorb this wavelength.

Applications

Atomic absorption spectrometry (AAS) is an easy, high-throughput, and inexpensive technology used primarily to analyze elements in solution. As such, AAS is used in food and beverage, water, clinical research, and pharmaceutical analysis.

Procedure

1. Creating a steady state of freely dissociated ground state atoms using a heat source (flame)
2. Passing light of a specific wavelength through the flame. The wavelength corresponds to the amount of energy required to excite an electron from (typically) the ground to first excited state for a specific element.
3. Measuring the amount of the light absorbed by the atoms as they move to the excited state (the atomic absorption).
4. Using the measured absorbance to calculate the concentration of the element in a solution, based on a calibration graph.

Materials

• Spectrometer
• Radiation sources
• Atomizers
• Atomic absorption
• Spectrophotometer