Unlock Exclusive Discounts & Flash Sales! Click Here to Join the Deals on Every Wednesday!

Study of unsaturated fatty acids by Raman Spectroscopy (CAT#: STEM-ST-0080-WXH)

Introduction

An unsaturated fat is a fat or fatty acid in which there is at least one double bond within the fatty acid chain. A fatty acid chain is monounsaturated if it contains one double bond, and polyunsaturated if it contains more than one double bond.<br />The greater the degree of unsaturation in a fatty acid (i.e., the more double bonds in the fatty acid) the more vulnerable it is to lipid peroxidation (rancidity). Antioxidants can protect unsaturated fat from lipid peroxidation.




Principle

Raman Spectroscopy is a non-destructive chemical analysis technique which provides detailed information about chemical structure, phase and polymorphy, crystallinity and molecular interactions.
The principle behind Raman spectroscopy is that the monochromatic radiation is passed through the sample such that the radiation may get reflected, absorbed, or scattered. The scattered photons have a different frequency from the incident photon as the vibration and rotational property vary.

Applications

• Analysis of biocompatibility of a material.
• Analysis of nucleic acids.
• Study of interactions between drugs and cells.
• Photodynamic therapy (PDT).
• Analyzing metabolic accumulations of a substance or compounds.
• Diagnosis of disease.
• Analysis of individual cells.
• Cell sorting applications.
• Analyzing the features of biomolecules.
• Study of bone structure.

Procedure

1. Preparation of samples
2. Determine instrument parameters
3. Perform background scan
4. Test the sample
5. Data analysis

Materials

• Raman Spectrometer
• Raman Imaging Microscope