Unlock Exclusive Discounts & Flash Sales! Click Here to Join the Deals on Every Wednesday!

Lipid analysis by ion-mobility mass spectrometry (CAT#: STEM-ST-0082-LJX)

Introduction

The high chemical complexity of the lipidome is one of the major challenges in lipidomics research. Ion-mobility spectrometry (IMS), a gas-phase electrophoretic technique, makes possible the separation of ions in the gas phase according to their charge, shape, and size. IMS can be combined with mass spectrometry (MS), adding three major benefits to traditional lipidomic approaches. First, IMS-MS allows the determination of the collision cross section (CCS), a physicochemical measure related to the conformational structure of lipid ions. The CCS is used to improve the confidence of lipid identification. Second, IMS-MS provides a new set of hybrid fragmentation experiments. These experiments, which combine collision-induced dissociation with ion-mobility separation, improve the specificity of MS/MS-based approaches. Third, IMS-MS improves the peak capacity and signal-to-noise ratio of traditional analytical approaches. In doing so, it allows the separation of complex lipid extracts from interfering isobaric species. Developing in parallel with advances in instrumentation, informatics solutions enable analysts to process and exploit IMS-MS data for qualitative and quantitative applications.




Principle

Ion mobility spectrometry–mass spectrometry (IMS-MS) is an analytical chemistry method that separates gas phase ions based on their interaction with a collision gas and their masses. In the first step, the ions are separated according to their mobility through a buffer gas on a millisecond timescale using an ion mobility spectrometer. The separated ions are then introduced into a mass analyzer in a second step where their mass-to-charge ratios can be determined on a microsecond timescale.

Applications

For studying the gas phase ion structure
For detecting the chemical warfare agents and explosives
For the analysis of proteins, peptides, drug-like molecules and nano particles
For monitoring isomeric reaction intermediates and probe their kinetics
For proteomics and pharmaceutical analysis

Procedure

1. Add sample
2. The ions in the sample are separated in the ion mobility spectrometer
3. The separated ions are introduced into the mass analyzer for detection
4. Store the detection results

Materials

• Sample Type:
Lipid

Notes

1. Ion mobility spectrometry is also a very fast technique, making it suitable for high-throughput applications. The entire analysis can be completed in just a few minutes.
2. The method is extremely sensitive and able to detect trace amounts of contaminants that other spectrometry methods would miss.
3. The effective separation of analytes achieved with this method makes it widely applicable in the analysis of complex samples such as in proteomics and metabolomics.