Unlock Exclusive Discounts & Flash Sales! Click Here to Join the Deals on Every Wednesday!

Characterization of Amyloid-β Self-Assembly by Nanoparticle tracking analysis (NTA) (CAT#: STEM-MB-0716-WXH)

Introduction

The deposition of amyloid β (Aβ) plaques and fibrils in the brain parenchyma is a hallmark of Alzheimer’s disease (AD), but a mechanistic understanding of the role Aβ plays in AD has remained unclear. One important reason could be the limitations of current tools to size and count Aβ fibrils in real time. Multispectral nanoparticle tracking analysis (MNTA) was introduced to address this limitation; it uses three visible wavelengths to quantitate heterogeneous particle distributions.




Principle

Nanoparticle tracking analysis (NTA) is a method for visualizing and analyzing particles in liquids that relates the rate of Brownian motion to particle size. The rate of movement is related only to the viscosity and temperature of the liquid; it is not influenced by particle density or refractive index. NTA allows the determination of a size distribution profile of small particles with a diameter of approximately 10-1000 nanometers (nm) in liquid suspension.

Applications

NTA has been used by commercial, academic, and government laboratories working with nanoparticle toxicology, drug delivery, exosomes, microvesicles, bacterial membrane vesicles, and other small biological particles, virology and vaccine production, ecotoxicology, protein aggregation, orthopedic implants, inks and pigments, and nanobubbles.

Procedure

1. Sample preparation
2. Nanoparticle Tracking Analysis
3. NTA Data Processing, Display, and Interpretation

Materials

• Nanoparticle Tracking Analysis (NTA) instrument
• NanoSight instrument
• Nanoparticle Analyzer