Unlock Exclusive Discounts & Flash Sales! Click Here to Join the Deals on Every Wednesday!

Study of protein-protein interaction (PPI) by Magnetic tweezers (MT) (CAT#: STEM-MB-1263-WXH)

Introduction

Protein–protein interactions (PPIs) are physical contacts of high specificity established between two or more protein molecules as a result of biochemical events steered by interactions that include electrostatic forces, hydrogen bonding and the hydrophobic effect. Many are physical contacts with molecular associations between chains that occur in a cell or in a living organism in a specific biomolecular context.<br />Proteins rarely act alone as their functions tend to be regulated. Many molecular processes within a cell are carried out by molecular machines that are built from numerous protein components organized by their PPIs. These physiological interactions make up the so-called interactomics of the organism, while aberrant PPIs are the basis of multiple aggregation-related diseases, such as Creutzfeldt–Jakob and Alzheimer's diseases.




Principle

Magnetic tweezers (MT) are scientific instruments for the manipulation and characterization of biomolecules or polymers. These apparatus exert forces and torques to individual molecules or groups of molecules. It can be used to measure the tensile strength or the force generated by molecules.

Applications

Study of mechanical properties of biological macromolecules like DNA or proteins in single-molecule experiments.
Study of the rheology of soft matter.
Study of force-regulated processes in living cells.

Procedure

1.Sample preparation
2.Force Calibration
3.Measurement
4.Analysis

Materials

Magnetic tweezers