Unlock Exclusive Discounts & Flash Sales! Click Here to Join the Deals on Every Wednesday!

Study of Metal binding in Cytochrome c oxidase by total reflection X-ray fluorescence (TXRF) spectrometry (CAT#: STEM-ST-0218-WXH)

Introduction

The enzyme cytochrome c oxidase or Complex IV, is a large transmembrane protein complex found in bacteria, archaea, and mitochondria of eukaryotes.<br />It is the last enzyme in the respiratory electron transport chain of cells located in the membrane. It receives an electron from each of four cytochrome c molecules and transfers them to one oxygen molecule and four protons, producing two molecules of water. In addition to binding the four protons from the inner aqueous phase, it transports another four protons across the membrane, increasing the transmembrane difference of proton electrochemical potential, which the ATP synthase then uses to synthesize ATP.<br />Cytochrome c oxidase contains a binding site for a non-redox-active metal at the interface of subunits I and II, usually a magnesium ion.




Principle

XRF describes the process where some high-energy radiation excites atoms by shooting out electrons from the innermost orbitals. When the atom relaxes, that is, when outer electrons fill inner shells, X-Ray fluorescence radiation is emitted.
Total-reflection X-ray fluorescence (TXRF) is a multi-element simultaneous analysis technology developed based on X-ray fluorescence (XRF). An aircooled X-ray tube generates an X-ray beam, which is reduced to a narrow energy range by a multi-layer monochromator. The fine beam impinges on a polished sample carrier at a very small angle and is totally reflected.

Applications

XRF is widely used as a fast characterization tool in many analytical labs across the world, for applications as diverse as metallurgy, forensics, polymers, electronics, archaeology, environmental analysis, geology and mining.

Procedure

1. Primary X-rays knock out an electron from one of the orbitals surrounding the nucleus within an atom of the material.
2. A hole is produced in the orbital, resulting in a high energy, unstable configuration for the atom.
3. To restore equilibrium, an electron from a higher energy, outer orbital falls into the hole. Since this is a lower energy position, the excess energy is emitted in the form of fluorescent X-rays.
The energy difference between the expelled and replacement electrons is characteristic of the element atom in which the fluorescence process is occurring – thus, the energy of the emitted fluorescent X-ray is directly linked to a specific element being analyzed.

Materials

XRF spectrometer (including X-ray source, sample chamber, analysing crystal, detector and signal processing computer)