Unlock Exclusive Discounts & Flash Sales! Click Here to Join the Deals on Every Wednesday!

Bioaccumulation study of Cu in Prion protein by total reflection X-ray fluorescence (TXRF) spectrometry (CAT#: STEM-ST-0217-WXH)

Introduction

A conformational change of the prion protein is responsible for a class of neurodegenerative diseases called the transmissible spongiform encephalopathies that include mad cow disease and the human afflictions kuru and Creutzfeldt-Jakob disease. Despite the attention given to these diseases, the normal function of the prion protein in healthy tissue is unknown. Research over the past few years, however, demonstrates that the prion protein is a copper binding protein with high selectivity for Cu2+. The structural features of the Cu2+ binding sites have now been characterized and are providing important clues about the normal function of the prion protein and perhaps how metals or loss of protein function play a role in disease. The link between prion protein and copper may provide insight into the general, and recently appreciated, role of metals in neurodegenerative disease.




Principle

XRF describes the process where some high-energy radiation excites atoms by shooting out electrons from the innermost orbitals. When the atom relaxes, that is, when outer electrons fill inner shells, X-Ray fluorescence radiation is emitted.
Total-reflection X-ray fluorescence (TXRF) is a multi-element simultaneous analysis technology developed based on X-ray fluorescence (XRF). An aircooled X-ray tube generates an X-ray beam, which is reduced to a narrow energy range by a multi-layer monochromator. The fine beam impinges on a polished sample carrier at a very small angle and is totally reflected.

Applications

XRF is widely used as a fast characterization tool in many analytical labs across the world, for applications as diverse as metallurgy, forensics, polymers, electronics, archaeology, environmental analysis, geology and mining.

Procedure

1. Primary X-rays knock out an electron from one of the orbitals surrounding the nucleus within an atom of the material.
2. A hole is produced in the orbital, resulting in a high energy, unstable configuration for the atom.
3. To restore equilibrium, an electron from a higher energy, outer orbital falls into the hole. Since this is a lower energy position, the excess energy is emitted in the form of fluorescent X-rays.
The energy difference between the expelled and replacement electrons is characteristic of the element atom in which the fluorescence process is occurring – thus, the energy of the emitted fluorescent X-ray is directly linked to a specific element being analyzed.

Materials

XRF spectrometer (including X-ray source, sample chamber, analysing crystal, detector and signal processing computer)