Unlock Exclusive Discounts & Flash Sales! Click Here to Join the Deals on Every Wednesday!

Ultrastructural study of cysts of free-living protozoa by transmission electron microscopy technology (CAT#: STEM-MIT-0007-LJX)

Introduction

Cysts of free-living protozoa have an impact on the ecology and epidemiology of bacteria because they may act as a transmission vector or shelter the bacteria against hash environmental conditions. Detection and localization of intracystic bacteria and examination of the en- and excystment dynamics is a major challenge because no detailed protocols for ultrastructural analysis of cysts are currently available. Transmission electron microscopy (TEM) is ideally suited for those analyses.




Principle

Transmission electron microscopy (TEM) is to project the accelerated and concentrated electron beam onto a very thin sample, and the electron collides with the atoms in the sample and changes the direction, thus generating the stereo scattering Angle. The size of the scattering Angle is related to the density and thickness of the sample, so the image can be formed with different shades. The image can be enlarged, focused and displayed on imaging devices such as fluorescent screens, film and photosensitive coupling components. The resolution of transmission electron microscope is much higher than that of optical microscope, can reach 0.1~0.3nm, magnification of tens of thousands to millions of times. Therefore, transmission electron microscopy can be used to observe the fine structure of the sample.

Applications

Microscopic imaging in materials science or biology.

Procedure

1. Sampling
2. Preparation of slices
3. Staining (Select according to the specific experimental situation)
4. Observation

Materials

• Sample Type:
Cysts of free-living protozoa

Notes

Pay attention to air humidity
Voltage needs to be stabilized