Unlock Exclusive Discounts & Flash Sales! Click Here to Join the Deals on Every Wednesday!

Molecular mass analysis of pullulan by Static light scattering (SLS) (CAT#: STEM-MB-0589-WXH)

Introduction

Pullulan is a polysaccharide polymer consisting of maltotriose units, also known as α-1,4- ;α-1,6-glucan'. Three glucose units in maltotriose are connected by an α-1,4 glycosidic bond, whereas consecutive maltotriose units are connected to each other by an α-1,6 glycosidic bond. Pullulan is produced from starch by the fungus Aureobasidium pullulans. Pullulan is mainly used by the cell to resist desiccation and predation. The presence of this polysaccharide also facilitates diffusion of molecules both into and out of the cell.




Principle

Static light scattering is a technique in physical chemistry that measures the intensity of the scattered light to obtain the average molecular weight Mw of a macromolecule like a polymer or a protein in solution. Measurement of the scattering intensity at many angles allows calculation of the root mean square radius, also called the radius of gyration Rg. By measuring the scattering intensity for many samples of various concentrations, the second virial coefficient, A2, can be calculated.

Applications

The main applications of static light scattering is molecular mass determination of macromolecules, such as proteins and polymers, as it is possible to measure the molecular mass of proteins without any assumption about their shape.

Procedure

1. Sample preparation
2. Measurement by SLS instrument
3. Data analysis

Materials

• Right-Angle Light Scattering (RALS) Detector
• Low-Angle Light Scattering (LALS) Detector
• Hybrid RALS/LALS Detector
• Multi-Angle Light Scattering (MALS) Detector