Unlock Exclusive Discounts & Flash Sales! Click Here to Join the Deals on Every Wednesday!

Molecular mass analysis of plasmid DNA by Static light scattering (SLS) (CAT#: STEM-MB-0570-WXH)

Introduction

A plasmid is a small, circular, double-stranded DNA molecule that is distinct from a cell's chromosomal DNA. Plasmids naturally exist in bacterial cells, and they also occur in some eukaryotes. Often, the genes carried in plasmids provide bacteria with genetic advantages, such as antibiotic resistance. Artificial plasmids are widely used as vectors in molecular cloning, serving to drive the replication of recombinant DNA sequences within host organisms.




Principle

Static light scattering is a technique in physical chemistry that measures the intensity of the scattered light to obtain the average molecular weight Mw of a macromolecule like a polymer or a protein in solution. Measurement of the scattering intensity at many angles allows calculation of the root mean square radius, also called the radius of gyration Rg. By measuring the scattering intensity for many samples of various concentrations, the second virial coefficient, A2, can be calculated.

Applications

The main applications of static light scattering is molecular mass determination of macromolecules, such as proteins and polymers, as it is possible to measure the molecular mass of proteins without any assumption about their shape.

Procedure

1. Sample preparation
2. Measurement by SLS instrument
3. Data analysis

Materials

• Right-Angle Light Scattering (RALS) Detector
• Low-Angle Light Scattering (LALS) Detector
• Hybrid RALS/LALS Detector
• Multi-Angle Light Scattering (MALS) Detector