Unlock Exclusive Discounts & Flash Sales! Click Here to Join the Deals on Every Wednesday!

Determination of the Elemental Composition of Mature Wheat Grain by Secondary Ion Mass Spectrometry (SIMS) (CAT#: STEM-ST-1712-CJ)

Introduction

Secondary ion mass spectrometry (SIMS) is a highly sensitive surface analytical technique that is capable of detecting and mapping elements at the parts per million level with sub-micron resolution. It utilizes an energetic primary ion beam to bombard the samples and liberate secondary particles, some of which are ionized and can be captured and analysed to determine their mass/charge ratio. A wide range of elements and their isotopes can be detected by SIMS, from hydrogen to uranium.




Principle

Secondary Ion Mass Spectrometry (SIMS) is a technique used to analyze the composition of solid surfaces and thin films by sputtering the surface of the specimen with a focused primary ion beam and collecting and analyzing ejected secondary ions. The mass/charge ratios of these secondary ions are measured with a mass spectrometer to determine the elemental, isotopic, or molecular composition of the surface to a depth of 1 to 2 nm.

Applications

Element Analysis

Procedure

1. Sample preparation: The sample is prepared by cleaning it to remove any contaminants that could interfere with the analysis. The sample may also be coated with a thin layer of conductive material to prevent charging during analysis.
2. Primary ion bombardment: The sample is bombarded with a beam of high-energy primary ions, typically from an ion gun. The primary ions interact with the atoms on the surface of the sample, causing the ejection of secondary ions, neutrals, and electrons.
3. Secondary ion extraction: The secondary ions are extracted from the sample surface using a high voltage electric field. The extracted ions are accelerated towards the mass spectrometer.
4.Mass separation: The ions are separated by their mass-to-charge ratio (m/z) using a mass spectrometer. The ions are then detected by an ion detector, which measures their abundance.
5. Data analysis: The data is analyzed to determine the elemental and isotopic composition, as well as the chemical structure and molecular fragmentation patterns of the sample. This information can be used to identify the material and understand its properties and behavior.

Materials

• Sample: Solid thin layer; Flat surface material; Powder; Metals; Semiconductors and Insulators & More
• Equipment: Dynamic Secondary Ion Mass Spectrometry (D-SIMS) instruments

Notes

1. Due to the large variation in ionization probabilities among elements sputtered from different materials, comparison against well-calibrated standards is necessary to achieve accurate quantitative results.
2. SIMS is the most sensitive surface analysis technique, with elemental detection limits ranging from parts per million to parts per billion.