Unlock Exclusive Discounts & Flash Sales! Click Here to Join the Deals on Every Wednesday!

Chemical Characterization of Metal Halide Perovskites by Secondary Ion Mass Spectrometry (SIMS) (CAT#: STEM-ST-1708-CJ)

Introduction

Metal halide perovskite (MHP) solar cells are gaining attention for their rapidly growing power conversion efficiency. Composite engineering is one of the most effective ways to improve the performance of MHP solar cells.




Principle

Secondary Ion Mass Spectrometry (SIMS) is a technique used to analyze the composition of solid surfaces and thin films by sputtering the surface of the specimen with a focused primary ion beam and collecting and analyzing ejected secondary ions. The mass/charge ratios of these secondary ions are measured with a mass spectrometer to determine the elemental, isotopic, or molecular composition of the surface to a depth of 1 to 2 nm.

Applications

Materials Science

Procedure

1. Sample preparation: The sample is prepared by cleaning it to remove any contaminants that could interfere with the analysis. The sample may also be coated with a thin layer of conductive material to prevent charging during analysis.
2. Primary ion bombardment: The sample is bombarded with a beam of high-energy primary ions, typically from an ion gun. The primary ions interact with the atoms on the surface of the sample, causing the ejection of secondary ions, neutrals, and electrons.
3. Secondary ion extraction: The secondary ions are extracted from the sample surface using a high voltage electric field. The extracted ions are accelerated towards the mass spectrometer.
4.Mass separation: The ions are separated by their mass-to-charge ratio (m/z) using a mass spectrometer. The ions are then detected by an ion detector, which measures their abundance.
5. Data analysis: The data is analyzed to determine the elemental and isotopic composition, as well as the chemical structure and molecular fragmentation patterns of the sample. This information can be used to identify the material and understand its properties and behavior.

Materials

• Sample: Solid thin layer; Flat surface material; Powder; Metals; Semiconductors and Insulators & More
• Equipment: Dynamic Secondary Ion Mass Spectrometry (D-SIMS) instruments

Notes

1. Due to the large variation in ionization probabilities among elements sputtered from different materials, comparison against well-calibrated standards is necessary to achieve accurate quantitative results.
2. SIMS is the most sensitive surface analysis technique, with elemental detection limits ranging from parts per million to parts per billion.