Unlock Exclusive Discounts & Flash Sales! Click Here to Join the Deals on Every Wednesday!

Characterization of Single-Cell Electroporation by Patch clamp (CAT#: STEM-PET-0037-WXH)

Introduction

Electroporation is a widely used method for the introduction of polar and charged agents such as dyes, drugs, DNA, RNA, proteins, peptides, and amino acids into cells. Traditionally, electroporation is performed with large electrodes in a batch mode for treatment of a large number of cells in suspension. Recently, microelectrodes that can produce extremely localized electric fields, such as solid carbon fiber microelectrodes, electrolyte-filled capillaries and micropipettes as well as chip-based microfabricated electrode arrays, have proven useful to electroporate single cells and subcellular structures. Single-cell electroporation opens up a new window of opportunities in manipulating the genetic, metabolic, and synthetic contents of single targeted cells in tissue slices, cell cultures, in microfluidic channels or at specific loci on a chip-based device.




Principle

The patch-clamp technique involves a glass micropipette forming a tight gigaohm seal with the cell membrane. The micropipette contains a wire bathed in an electrolytic solution to conduct ions. To measure single ion channels, a “patch” of membrane is pulled away from the cell after forming a gigaohm seal.

Applications

• Study of ionic currents in individual isolated living cells, tissue sections, or patches of cell membrane.
• Study of excitable cells such as neurons, cardiomyocytes, muscle fibers, and pancreatic beta cells.
• Study of ion channels.

Procedure

1. Fabrication of glass electrodes
2. Measuring glass electrode resistance and compensating offset potential
3. Glass electrode contact to cell membrane and obtain a GΩ seal
4. Acquire and analyse recordings using the appropriate software.

Materials

Patch clamp system