Unlock Exclusive Discounts & Flash Sales! Click Here to Join the Deals on Every Wednesday!

Analysis of medicinal plant by supercritical fluid chromatography (CAT#: STEM-CT-0018-LJX)

Introduction

Medicinal plants with complex matrices are endowed with a wide scope of biological activities. The separation, quantification, characterization and purification of bioactive components from herbal medicine extracts have always challenged analysts. Fortunately, the advancement of various emerging techniques has provided potent support for improving the method selectivity, sensitivity and run speeds in medicinal plant analyses. In recent years, the advent of new-generation supercritical fluid chromatography (SFC) instruments and a wide diversity of column chemistries, coupled with the intrinsic technical features of SFC, have made it an alternative and prominent analytical platform in the medicinal plant research area.




Principle

Supercritical fluid is a substance that has both gaseous and liquid properties above the critical point. Supercritical fluids have the advantages of high diffusion coefficient, low viscosity, adjustable solubility and high vapor phase density, so they can provide efficient mass spectrometry ionization and separation results.
Supercritical fluid chromatography (SFC) is an efficient separation technique that uses supercritical fluid as a mobile phase. The samples are packed into short tubes or SPE columns, and the samples are compressed and regulated by supercritical fluid to obtain good solubility. The sample components are then separated by column interaction, thus achieving the separation of different compounds.

Applications

For efficient separation of substances
Widely used in biology, chemistry, environmental protection and other fields

Procedure

1. Sample injection
2. The high pressure pump increases the pressure of the sample and mobile phase
3. The sample and mobile phase enter the chromatographic column
4. Flow limiter assists sample separation

Materials

• Sample Type:
Medicinal plant

Notes

1. In the process of separation, the control of pressure and temperature of supercritical fluid is very important, which affects the properties and separation efficiency of supercritical fluid.
2. In addition, the selection of the appropriate column, packing and moving equivalent factors will also affect the separation effect.